

# **Procedures for Identifying** S-Allele Genotypes of Brassica\*

## D.H. Wallace

Departments of Plant Breeding and Biometry, and of Vegetable Crops, Cornell University, Ithaca, N.Y. (USA)

Summary. Procedures are described for efficient selection of: (1) homozygous and heterozygous S-allele genotypes; (2) homozygous inbreds with the strong self- and sib-incompatibility required for effective seed production of single-cross  $F_1$  hybrids; (3) heterozygous genotypes with the high self- and sib-incompatibility required for effective seed production of 3- and 4-way hybrids.

From reciprocal crosses between two first generation inbred  $(I_1)$  plants there are three potential results: both crosses are incompatible; one is incompatible and the other compatible; and both are compatible. Incompatibility of both crosses is useful information only when combined with data from other reciprocal crosses. Each compatible cross, depending on whether its reciprocal is incompatible or compatible, dictates alternative reasoning and additional reciprocal crosses for efficiently and simultaneously identifying: (A) the S-allele genotype of all individual  $I_1$  plants, and (B) the expressions of dominance or codominance in pollen and stigma (sexual organs) of an S-allele heterozygous genotype. Reciprocal crosses provide the only efficient means of identifying S-allele genotypes and also the sexual-organ  $\times$  S-allele-interaction types.

Fluorescent microscope assay of pollen tube penetration into the style facilitates quantitation within 24-48 hours of incompatibility and compatibility of the reciprocal crosses. A procedure for quantitating the reciprocal difference is described that maximizes informational content of the data about interactions between Salleles in pollen and stigma of the S-allele-heterozygous genotype.

Use of the non-inbred  $I_o$  generation parent as a 'known' heterozygous S-allele genotype in crosses with its first generation selfed ( $I_1$ ) progeny usually reduces at least 7 fold the effort required for achieving objectives 1, 2, and 3, compared to the method of making reciprocal crosses only among  $I_1$  plants. Identifying the heterozygous and both homozygous S-allele genotypes during the  $I_1$  generation facilitates, during subsequent inbred generations, strong selection for or against modifier genes that influence the intensity of self- and sib-incompatibility. Selection for strong self and sib incompatibility can be effective for both homozygous inbreds and also for the S-allele heterozygote, thus facilitating production of single-cross  $F_1$  hybrids and also of 3- and 4-way hybrids.

Key words: Brassica – S alleles – Incompatibility – Hybrid – Crucifer – Dominance

#### Introduction

Pearson (1932) first suggested that self incompatibility of *Brassica* be used to facilitate the cross fertilization required for hybrid seed production. Commercial hybrid production was achieved in Japan in 1950, in the United States in 1954, and in Europe in 1966 (Haruta 1962; Wallace and Nasrallah 1968; Johnson 1972). Since about 1960 Japanese companies have produced 3- and 4-way hybrids by crossing inbreds, and the resultant single-cross S-allele heterozygotes for commercial seed production. The first U.S. developed 3-way cross was released in 1971. Most U.S. seedsmen use a single self-incompatible inbred that is pollinated (topcrossed) with an open-pollinated cultivar. Seed production is only on the inbred, so neither plants nor land is used efficiently.

The knowledge and procedures essential to hybrid seed production have been discussed fragmentarily in many research reports. The purpose of this paper is to consolidate such information and to describe efficient procedures for identifying the S-allele homozygous inbreds and S-allele heterozygotes which have sufficient self- and sib-incompatibility to enforce the cross fertilization required for

<sup>\*</sup> Department of Plant Breeding and Biometry paper No. 690

commercial production of hybrid seed of the *Brassica* crops. Some new terms for describing facets of sporophytic incompatibility are introduced.

#### **Background Information for Methods and Procedures**

#### General Knowledge of Incompatibility

Sporophytic and gametophytic systems of incompatibility are reviewed by de Nettancourt (1977, 1972), Townsend (1971) and Arasu (1968). Physiological and biochemical aspects are reviewed by Heslop-Harrison (1974, 1975, 1975a) and Ferrari and Wallace (1977). General knowledge of these systems will assist in application of the procedures outlined herein.

#### First Inbred Generation Siblings

First inbred generation  $(I_1)$  siblings are by far the easiest population in which to identify homozygous and heterozygous S-allele genotypes. Occasionally all  $I_1$  plants will be homozygous for the same S-allele [i.e. the non-inbred ( $I_0$  generation) parent was an S-allele homozygote]. However, self incompatibility enforces cross fertilization, so selected  $I_0$  plants usually will be S-allele heterozygotes. The  $I_1^*$  generation will then segregate for three S-allele genotypes, two homozygous and one heterozygous. Presence of but one or two S-alleles in a population is guaranteed by bud selfing a selected  $I_0$  plant to bypass the self incompatibility. Presence of more than two S alleles in a plant population makes genotype identification very difficult.

When the I<sub>o</sub> plant carries two S alleles, a minimum of 13 I<sub>1</sub> plants is required to provide 95% probability that all three possible genotypes are present:  $S_1S_1$ ,  $S_1S_2$  and  $S_2S_2$ . A 99% probability requires 19 I<sub>1</sub> plants.

#### The Io Parent as a 'Known' S-Allele Genotype

Since an  $I_0$  plant is usually an S-allele heterozygote, it is, for its  $I_1$  progeny only, a 'known' heterozygous S-allele genotype. Reciprocal crosses between this 'known' heterozygote and its  $I_1$  progeny usually facilitate the easiest possible identification of the S-allele genotypes. Cuttings of the original  $I_0$  should, therefore, be grown vegetatively through the time that the  $I_1$  progeny is being grown, and vernalized and brought to flower at the same time as the  $I_1$ progeny. For some *Brassica* species environmental manipulation will extend the flowering duration of the  $I_0$  until the  $I_1$  is flowering (Richards and Thurling 1973).

#### **Recessive and Dominant S Alleles**

Alleles  $S_2$ ,  $S_5$  and  $S_{15}$  (Thompson 1968; Wallace 1979) and some other less well recognized alleles (Johnson and Blyton-Conway 1976; Ockendon 1975; Lawson and Williams 1976) are generally recessive to nearly all other S alleles, especially in the pollen. Thus, the S-allele is inactive or weakly active, i.e. largely unexpressed, in heterozygous combination with most S alleles. Two highly recessive S alleles in heterozygous combination are often both largely inactive, this being the S-allele interaction called mutual weakening (Wallace 1979). Also, homozygotes of these highly recessive alleles usually have a low intensity of self incompatibility (Johnson and Blyton-Conway 1976). Since almost all plants of open pollinated cultivars are heterozygotes, these highly recessive S alleles are seldom fully expressed. Therefore, these recessive S alleles have high transmission to progeny and occur in as many as 65% of the plants of some open-pollinated *Brassica* populations (Johnson and Blyton-Conway 1976). In contrast, highly dominant S alleles almost always have near full activity (Visser 1977), resulting in lowered transmission. Consequently, highly dominant alleles occur in a minor proportion of plants of most open-pollinated populations.

Inbreds with low self- and sib-incompatibility are poor parents for hybrid seed production, especially since their incompatibility is further weakened by environmental influence (Johnson and Blyton-Conway 1976; Johnson 1971; Richards and Thurling 1973a)

#### Flow Charts of Procedures

As an aid to understanding the organization and sequence of all steps required for isolating and determining the merit of an inbred as a female parent for hybrid seed production, a flow chart of procedures is presented (Chart 1). Additional flow charts are given to aid comprehension of the alternative reasoning and steps used to identify the S-allele genotypes from (Chart 2) reciprocal crosses among the  $I_1$  plants, or (Chart 3) using the  $I_0$  parent as a 'known' genotype that is reciprocally crossed with its  $I_1$  plants. Charts 2 and 3 are both amplifications of the interpretative procedures (Chart 1: Step 8) by which the S-allele genotypes are determined.

#### Methods

#### Evaluating the Parents

The first step is selection for horticultural, disease resistance and quality characteristics, and for diversity of origin (Chart 1: Step 1). The next three steps all involve pollination procedures as described next.

#### Pollination Procedures

Self and reciprocal cross pollinations, except bud pollinations, are with open flowers. Emasculation is unnecessary for preventing unwanted self pollination but anther removal during pollination is recommended if it facilitates transfer of pollen to the stigma. Pollen is transferred by rubbing dehisced anthers against stigmas.

Pollinated flowers should be marked below the lowest flower with a label held with a string looped around the raceme. Flowers or buds immediately above the highest pollinated flower on the raceme can be removed to separate pollinated from non pollinated flowers. A pressure-applied label which is readily removable can be lightly pressed onto the back of the string-held label. Information recorded on both labels includes: (1) a consecutive number for the pollination; (2) specific identification of the female and male parents; (3) number of flowers pollinated if other than standard and (4) the date.

#### Measuring Self-Incompatibility of the Parent (Chart 1: Step 2)

Flowers of  $I_0$  plants should be selfed before or at the time that buds are selfed to obtain  $I_1$  seed. The  $I_0$  might also be reciprocally crossed with an unrelated plant to check the  $I_0$  male and female fertilities. If either the pollen tube penetration or seed set data Flow Chart 1. Procedures for: Identifying S-allele genotypes, determining self- and sib-incompatibilities, and determining potential for use in hybrid seed production

| Step 1:  | Select an I <sub>o</sub> plant for horticultural, disease resistance and other characteristics, and for diversity of origin                                                                                                                                                                                                                                                                                                                              |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 2:  | Cross reciprocally with testers of the highly recessive S-alleles $\downarrow$                                                                                                                                                                                                                                                                                                                                                                           |
| Step 3:  | Assay for self incompatibility                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Step 4:  | Self by bud pollination to get $I_1$ generation seed                                                                                                                                                                                                                                                                                                                                                                                                     |
| Step 5:  | Grow, vernalize and bring the $I_1$ progeny to flowering                                                                                                                                                                                                                                                                                                                                                                                                 |
| Step 6:  | Make reciprocal crosses among $I_1$ sibling plants, or for improved efficiency, Make reciprocal crosses between the $I_0$ parent and the $I_1$ siblings                                                                                                                                                                                                                                                                                                  |
| Step 7:  | Score and record pollen tube penetration using fluorescent microscopy                                                                                                                                                                                                                                                                                                                                                                                    |
| Step 8:  | Quantitate the reciprocal difference between the reciprocal crosses. Interpret the reciprocal difference and the pollen tube penetration scores according to the stepwise procedures of Flow Charts 2 or 3. Use Chart 2 if the data are from intercrosses among $I_1$ sibling plants. Use Chart 3 if the data are from reciprocal crosses between the $I_0$ parent and the $I_1$ sibling plants                                                          |
| Step 9:  | Within each S-allele genotype, including heterozygotes if planning for 3- or 4-way crosses, select for strong self and sib incompatibility to stabilize any effects of modifying genes $\downarrow$                                                                                                                                                                                                                                                      |
| Step 10: | Test for stability of self and sib incompatibility over stage of plant development, across variations of temperature and humidity, and through subsequent generations of inbreeding $\downarrow$                                                                                                                                                                                                                                                         |
| Step 11: | Compare seed set data with the pollen tube penetration data                                                                                                                                                                                                                                                                                                                                                                                              |
| Step 12: | Consider 2-, 3- and 4-way compatibilities and incompatibilities among the alleles carried by the different inbreds and their heterozygotes, including potential for the S-allele heterozygote to fertilize or to be fertilized by possible selfs from a homozygous recessive genotype used as the female parent. If the commercial crop is the seed, as for oil seed, consider the potential for sufficient cross polination to effect adequate seed set |
| Step 13: | Test for nicking of pollination times and develop procedures for improving nicking                                                                                                                                                                                                                                                                                                                                                                       |
| Step 14: | Produce single-cross hybrid seed                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Step 15: | Test single-cross S-allele heterozygote for self and sib incompatibility                                                                                                                                                                                                                                                                                                                                                                                 |

Step 16: Produce 3- and 4-way hybrid seed

indicate weak self incompatibility (or fertility), the  $I_0$  plant may be discarded. If the  $I_0$  has superior horticultural merit only, its  $I_1$ may be tested, but identifying S-allele genotypes and finding strong self- and sib-incompatibility will usually be difficult.

# Testing for Highly Recessive and Dominant Alleles (Chart 1: Step 3)

It is desirable (Background Information: recessive and dominant alleles) that the highly recessive S alleles be identified in either the  $I_0$  plant or  $I_1$  progeny. This requires a homozygous tester for each such allele. If moderately active in either pollen or stigma, these alleles can be identified using reciprocal crosses between an  $I_0$  plant and a homozygous tester. Any incompatibility for either reciprocal cross identifies the recessive allele. Identification may be easier with  $I_1$  plants already shown to be the recessive genotype for their  $I_1$  progeny. Being recessive does not indicate that the allele is a highly recessive S-allele.

Testers for  $S_2$ ,  $S_5$ ,  $S_{15}$  and other highly recessive, or dominant,

alleles can be obtained from anyone who has matched S alleles against the respective alleles of the international S-allele collection (Ockendon 1975), or directly from that collection at the National Vegetable Research Station, Wellesbourne, Warwick, England.

Although advocated by others (Ockendon 1977; 1977a; Johnson and Blyton-Conway 1976), this author does not consider it necessary that the international-S-allele identity of dominant S alleles be specifically determined. The generalization that inbreds homozygous for dominant alleles have strong self- and sib-incompatibility does not always hold (Johnson and Blyton-Conway 1976). Also, recessive alleles can be highly incompatible (Smith et al. 1977). Therefore, selection of inbreds should be based primarily on strength of self and sib incompatibilities, and secondarily on dominance vs. recessiveness.

#### Obtaining Flowering I, Plants (Chart 1: Steps 4 and 5)

Bud pollinations (Chart 1: Step 4) should be done simultaneously with assaying the self-incompatibility of the  $I_0$  parent (Step 2) and

testing for highly recessive-S-alleles (Step 3). The  $I_1$  plants should then be grown, vernalized as required, and brought to flower (Step 5).

#### Pollen Tube Penetration Assay (Chart 1: Steps 6 and 7)

About 24 hours after pollination, two or more pollinated flowers should be removed. They may be wrapped together with the removable pressure-applied label. If seed set data will be collected, every other flower along the raceme can be taken. In the laboratory the pistils should be removed and placed in a test-tube onto which the removable label is transferred. Sufficient 1 N NaOH should then be added to cover the pistils which are then heated at 60°C for 1 hour, after which the NaOH is siphoned off. Aniline blue stain (2 gm/liter  $H_2O + 20$  gm  $K_3PO_4$ ) is then added and the pistils left overnight. In pairs, the pistils are then transferred to a microscope slide, with the removable label, and squashed in glycerol under a cover slide. Using filters that pass only wavelengths of 350 to 400 m $\mu$ , placed between a fluorescent light source and a light microscope, each pistil should be visually scored for pollen tube penetration into the upper style as described by Kho and Baer (1968). The removable pressure-applied label should accompany the pistils through all steps. It provides all identification required for recording the pollen tube penetration data. The pistils can be put into cytological fixatives, before heating in the NaOH (Kho and Baer 1968; Johnson 1971); this may reduce background fluorescence by tissues other than the pollen tubes.

The following scores are recommended: 0 = 0 tubes, 1 = 1-2, 2 = 3-5, 3 = 6-9, 4 = 10-14, 5 = 15-20, 6 = 12-50, 7 = 51-100, and 8 = 100 + tubes. The low and increasingly larger number of penetrated pollen tubes within each successively higher score maximizes ability to differentiate among pollinations with the strongest incompatibility. Recording scores rather than absolute numbers of tubes is preferred, because approximation of tube number requires less time. More importantly, scores better facilitate quantification and interpretation of the difference in incompatibility between reciprocal crosses.

#### **Procedures for Identifying Genotypes**

Reciprocal Crosses, and Recording and Interpreting Data

#### Beginning the Reciprocal Crosses (Chart 1: Step 6)

The most efficient first step is to begin to intercross the  $I_o$  reciprocally with each  $I_1$  plant as it comes into flower. If the  $I_o$  is not available or is not flowering, the second most effective beginning procedure is to begin reciprocal crosses between the first flowering  $I_1$  plants. As each  $I_1$  plant comes into flower it should be reciprocally crossed to an  $I_1$  that has already been reciprocally crossed to one  $I_1$  sibling, and also reciprocally crossed to another  $I_1$  that has not been crossed to an  $I_1$  sib. This forms a chain of reciprocal crosses.

Recording Pollen Tube Penetration Data (Chart 1: Step 7)

As pollen tube penetrations into the style are scored, the pressure-applied removable label should be lifted from the

microscope slide and transferred to a first notebook for cross pollinations at the position of its consecutive pollination number. Use a separate consecutive listing for selfs. The score for each pistil is then recorded next to the removable label. The consecutive pollination-specific number and the pollen-tube penetration scores are next recorded in a 'first-interpretative diallel table' (Table 1). Transferral of the pollination number with the data facilitates future correcting of inadvertent placement of data in an improper female  $\times$  male cell, which sometimes occurs and is revealed while quantifying the reciprocal difference. Maximum benefit from pollen tube penetration data requires that it be transferred and interpreted on the day the scores are made, or on the following day.

In a first-interpretative diallel table (Table 1 is an example), designations of individual  $I_1$  plants at the side and top of the table are in numerical order, which is random with respect to the S-allele genotypes that will be identified (Table 2). Initial interpretations (Step 8 of Charts 1-3) should be made directly after the data are recorded in the first-interpretative diallel table. Final summarization after interpretation, especially for formal presentation, usually requires transferral of the data from the first- to a second-interpretative diallel table (Table 2 is an example). Here, the data of each individual  $I_1$  (or  $I_0$ ) plant are positioned adjacent to the data of other  $I_1$  (or  $I_{o}$ ) plants that behave alike, i.e. that have the same S-allele genotype. For example, in Table 2, all plants of genotype  $S_aS_a$  that were used as a male parent are adjacent to each other at the left, plants of heterozygous genotypes  $S_a S_b$ used as male are in the center and all plants of genotype  $S_b S_b$  are at the right. Usages of the plants as female are positioned, in this same order, from top to bottom. Minimal effort is required for transferral of data from a firstto a second-interpretative table if it is done as soon as all genotypes can be derived from the pollen tube penetration data. All seed set data and subsequent pollen tube data can then be entered directly into the second-interpretative table.

# Calculating and Interpreting Reciprocal Differences (Chart 1: Step 8)

The first step toward interpretation of pollen tube penetration data is quantification of the reciprocal difference of each pair of reciprocal crosses. Numerical magnitude of the reciprocal difference (RD) is calculated by subtracting the smallest from the largest summation of the two pollen tube penetration scores of the reciprocal crosses, as follows. RD = (Scl + Sc2) - (Sc3 + Sc4), where Sc1 and Sc2 are pollen tube penetration scores for two pistils of a cross, and Sc3 and Sc4 are scores for the reciprocal cross. The arithmetic difference between these sums is the numerical magnitude of RD. This magnitude applies to both

| Table 1. A first interpretative diallel table, illustrating the recording | <sup>a</sup> of the consecutive pollination and pollen tube penetration data, |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| followed by calculation and recording of the reciprocal difference        |                                                                               |

Pollen (d) parent

| Pollen (d) parent                                                            |                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                    |  |
|------------------------------------------------------------------------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--|
| I <sub>o</sub> or I <sub>o</sub> Plan                                        | nt number       |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                    |  |
| Line plant                                                                   | Io              | I <sub>1</sub> –1 | I <sub>1</sub> -2 | I <sub>1</sub> -3 | 1 <sub>1</sub> -4 | I <sub>1</sub> -5 | I <sub>1</sub> -6 | I <sub>1</sub> -7 | ۱ <sub>1</sub> -8 | I <sub>1</sub> -9 | I <sub>1</sub> -10 | l <sub>1</sub> -11 |  |
| 1<br>2 I <sub>o</sub><br>3<br>4                                              |                 |                   |                   |                   | 1<br>0<br>0,0     |                   |                   | 3<br>+16<br>8,8   | 2<br>0<br>0,0     |                   |                    |                    |  |
| $ \begin{array}{c}   1 \\   2 \\   3 \\   4 \end{array} $                    |                 |                   |                   |                   |                   |                   |                   | 8<br>0<br>0,0     |                   |                   |                    |                    |  |
| 1<br>2 I <sub>1</sub> -2<br>3<br>4                                           |                 |                   |                   |                   |                   |                   |                   | 24<br>+13<br>7,7  |                   |                   |                    |                    |  |
| 1<br>2 I <sub>1</sub> -3<br>3<br>4                                           |                 |                   |                   |                   |                   |                   |                   | 10<br>0<br>8,8    |                   |                   |                    |                    |  |
| 1<br>2 I <sub>1</sub> -4<br>3<br>4                                           | 4<br>0<br>0,0   |                   |                   |                   |                   |                   |                   | 26<br>-1<br>8,7   |                   |                   |                    |                    |  |
| 1                                                                            |                 |                   |                   |                   |                   |                   |                   | 12<br>+12<br>6,6  |                   |                   |                    |                    |  |
| 2 $I_1 - 5$<br>3 $I_1 - 5$<br>3 $I_1 - 6$<br>3 $I_1 - 6$<br>4 $I_1 - 6$<br>4 |                 |                   |                   |                   |                   |                   |                   | 14<br>+16<br>8,8  |                   |                   |                    |                    |  |
| 1<br>2 I <sub>1</sub> -7<br>3<br>4                                           | 6<br>-16<br>0,0 | 7<br>0<br>0,0     | 17<br>-13<br>0,1  | 19<br>0<br>8,8    | 25<br>+1<br>8,8   | 15<br>-12<br>0,0  | 13<br>-16<br>0,0  | Self<br>0,00,     | 11<br>15<br>0 1,0 | 9<br>-7<br>1,2    | 23<br>-12<br>2,2   | 21<br>-16<br>0,0   |  |
| 1<br>2 I <sub>1</sub> -8<br>3<br>4                                           |                 |                   |                   |                   |                   |                   |                   | 20<br>+15<br>8,8  |                   |                   |                    |                    |  |
| 1<br>2 I <sub>1</sub> -9<br>3<br>4                                           |                 |                   |                   |                   |                   |                   |                   | 18<br>+7<br>2,8   |                   |                   |                    |                    |  |
| 1<br>2 I <sub>1</sub> -10<br>3<br>4                                          |                 |                   |                   |                   |                   |                   |                   | 16<br>+12<br>8,8  |                   |                   |                    |                    |  |
| 1<br>2 I <sub>1</sub> -1<br>3<br>4                                           |                 |                   |                   |                   |                   |                   |                   | 22<br>+17<br>8,8  |                   |                   |                    |                    |  |

<sup>a</sup> Within each cell of the diallel table, the pollination number is recorderd on line 1, the reciprocal difference on line 2, the pollen tube penetration scores on line 3, and total seeds for 3 pods on line 4 <sup>b</sup> These are actual data collected for an L. progeny in 1077. Identification of the t

<sup>b</sup> These are actual data collected for an  $I_1$  progeny in 1977. Identification of the  $I_1$  genotypes was begun by making reciprocal crosses between the  $I_0$  parent and individual  $I_1$  plants. With the good luck of finding a reciprocal difference with the third reciprocal cross, which has 7/16 probability, a homozygous recessive  $I_1$  plant of genotype  $S_aS_a$  was successfully identified, using only the reciprocal crosses made on the first day of reciprocal pollinations. Thereafter, this homozygous recessive  $(S_aS_a)$  plant  $(I_1-7)$  was reciprocally intercrossed once with each of the other  $I_1$  plants. The genotype of each of the 11  $I_1$  plants was identified with only 13 pairs of reciprocal crosses, i.e. with a total of 26 crosses

|                                                            |                  |                    | Assigned               | S-allele ge            | notype               |                       |                       |                       |                       |                        |                         |                        |                               |                        |
|------------------------------------------------------------|------------------|--------------------|------------------------|------------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|-------------------------|------------------------|-------------------------------|------------------------|
|                                                            |                  |                    | SaSa                   |                        | SaSb                 |                       |                       |                       |                       |                        |                         |                        | S <sub>b</sub> S <sub>b</sub> | · · · · · · · · ·      |
|                                                            |                  | ne plant<br>. no.  | I <sub>1</sub> -1      | I <sub>1</sub> -7      | lo                   | I <sub>1</sub> -2     | I <sub>1</sub> -5     | I <sub>1</sub> -6     | 11-8                  | II <sub>1</sub> –9     | I <sub>1</sub> -10      | I <sub>1</sub> -11     | 11-3                          | I <sub>1</sub> -4      |
| a                                                          | 1<br>2<br>3<br>4 | I <sub>1</sub> -1  | Self<br>0.0 0.0<br>0 0 | 8<br>0<br>0,0<br>1     |                      |                       |                       |                       |                       |                        |                         |                        |                               | +1<br>8,8<br>47        |
| SaSa                                                       | 1<br>2<br>3<br>4 | I <sub>1</sub> -7  | 7<br>0<br>0,0<br>0     | Self<br>0,0 0,0<br>0 0 | 6<br>-16<br>0,0<br>0 | 17<br>-13<br>0.1<br>0 | 15<br>-12<br>0.0<br>0 | 13<br>-16<br>0.0<br>0 | 11<br>-15<br>1,0<br>0 | 9<br>-7<br>1,2<br>0    | 23<br>-12<br>2,2<br>0   | 21<br>-16<br>0,0<br>0  | 19<br>0<br>8,8<br>0           | 25<br>+1<br>8,8<br>51  |
|                                                            | 1<br>2<br>3<br>4 | I <sub>o</sub>     | +16<br>8,8<br>1        | 3<br>+16<br>8,8<br>0   | Self<br>0,0<br>0     | 0<br>0,0<br>0         | 0<br>0,0<br>0         | 0<br>0,0<br>0         | 2<br>0<br>0,0<br>0    | 0<br>0,0<br>0          | 0<br>0,0<br>0           | 0<br>0,0<br>0          | -2<br>0,0<br>0                | 1<br>0<br>0,0<br>0     |
|                                                            | 1<br>2<br>3<br>4 | I <sub>1</sub> -2  |                        | 24<br>+13<br>7,7<br>0  |                      | Self<br>1,2 0,<br>0   | 0<br>1                |                       |                       |                        |                         |                        |                               | +2<br>0                |
| Stigma ( <b>9) parent</b><br>S <sub>a</sub> S <sub>b</sub> | 1<br>2<br>3<br>4 | I <sub>1</sub> -5  |                        | 12<br>+12<br>6,6<br>0  |                      |                       | Self<br>1,0 0,0       | D<br>D                |                       |                        |                         |                        |                               | 1<br>0,0<br>0          |
|                                                            | 1<br>2<br>3<br>4 | I <sub>1</sub> -6  |                        | 14<br>+16<br>8,8<br>1  |                      |                       |                       | Self<br>0,00,<br>01   | 0<br>1                |                        |                         |                        |                               | 0,0<br>0               |
|                                                            | 1<br>2<br>3<br>4 | I <sub>1</sub> -8  |                        | 20<br>+15<br>8,8<br>58 | 5<br>0<br>0,0<br>1   |                       |                       |                       | Self<br>0,0 0,<br>5   | 2<br>4                 |                         |                        |                               | 0<br>0,0<br>0          |
|                                                            | 1<br>2<br>3<br>4 | I <sub>1</sub> -9  |                        | 18<br>+7<br>2,8<br>0   |                      |                       |                       |                       |                       | Self<br>0,0 0,0<br>0 0 |                         |                        |                               | 0<br>0,0<br>0          |
|                                                            | 1<br>2<br>3<br>4 | I <sub>1</sub> -10 |                        | 16<br>+12<br>8,8<br>23 |                      |                       |                       |                       |                       |                        | Self<br>0,0 1,0<br>1 13 | )<br>3                 |                               | +3<br>0,0<br>0         |
|                                                            | 1<br>2<br>3<br>4 | I <sub>1</sub> –11 |                        | 22<br>+16<br>8,8<br>10 |                      |                       |                       |                       |                       |                        |                         | Self<br>0,0 5,3<br>2 2 | 3                             | 0<br>0,0<br>0          |
|                                                            | 1<br>2<br>3<br>4 | I <sub>1</sub> -3  |                        | 10<br>0<br>8,8<br>20   |                      |                       |                       |                       |                       |                        |                         |                        | Self<br>0,3 0,0<br>0 0        | -2<br>0,0<br>0         |
| $S_bS_b$                                                   | 1<br>2<br>3<br>4 | I <sub>1</sub> 4   | -1<br>7,8<br>34        | 26<br>1<br>8,7<br>0    | 4<br>0<br>0,0<br>0   | +2<br>0,2<br>0        | +1<br>1,0<br>0        | 0                     | 0<br>0,0<br>3         | 0<br>0,0<br>0          | 0<br>0,0<br>0           | 0<br>0,0<br>0          | 0<br>0,0<br>0                 | Self<br>0,0 0,0<br>0 0 |

**Table 2.** A second interpretative diallel table, illustrating the reorganized and fully interpreted data<sup>a</sup> as compared to the same data in a first interpretative table<sup>b</sup>; the data herein are organized so that data of all plants that behave alike, i.e. that have the same S-allele genotype, are positioned adjacently

<sup>a</sup> Within each cell of the diallel table, the pollination number is recorded on line 1, the reciprocal difference on line 2, the pollen tube penetration scores on line 3, and total seeds for 3 pods on line 4

<sup>b</sup> Pollination numbers are entered in the table for only those crosses that were required to identify the genotype of all 11 I<sub>1</sub> plants, as given in Table 1. The remaining crosses with the I<sub>0</sub> parent and the I<sub>1</sub>-4 plant, respectively, serve to illustrate the reduced information that is derivable from reciprocal crosses of a heterozygote  $S_aS_b$  and of a dominant homozygote  $S_bS_b$  with each I<sub>1</sub> plant, as compared with the genotype differentiation that is achieved for every reciprocal cross with a known homozygous recessive  $S_aS_a$  (I<sub>1</sub>-7). The self pollinations test the intensity of self-incompatibility of each individual plant. The female  $\times$  male cells of first- and second-interpretative tables should be large enough to permit recording the data of at least five pollinations

Table 3. Sexual-organ  $\times$  S-allele-interaction Types I, II, III, and IV as derived from the two S-allele interactions (dominance<sup>a</sup> and codominance<sup>a</sup>) in factorial combination with the two sexual tissues (pollen and stigma)

|    | Pollen      | Stigma          |     | Pollen      | Stigma      |  |
|----|-------------|-----------------|-----|-------------|-------------|--|
| I  | $S_a < S_b$ | $S_{a} < S_{b}$ | III | $S_a = S_b$ | $S_a < S_b$ |  |
| II | $S_a < S_b$ | $S_a = S_b$     | IV  | $S_a = S_b$ | $S_a = S_b$ |  |

<sup>a</sup> The allele to the open side of < is dominant while that to the closed side is recessive, and = indicates codominance, i.e. strong and near equal activity of both alleles

crosses of the reciprocal pair, but a negative (-) sign is arbitrarily prefixed for the cross with the smaller sum of pollen tube penetration scores (Sc1 + Sc2, or Sc3 + Sc4), and a plus (+) is prefixed for the cross with the larger sum. Thus, the - and + prefixes identify the most and least incompatible crosses respectively of the reciprocal pair of crosses and the magnitude of RD quantifies this difference. With the recommended pollen tube penetration scores of 0 to 8, and determining RD from scores for two pistils, the smallest and largest possible magnitudes of RD are 0 and 16, with all intermediate numbers of 2-15 being possible. A magnitude of 0 indicates no difference in incompatibility (or of the inverse, i.e. compatibility) of the reciprocal crosses, 1-4 indicates minimal difference, and magnitudes approaching 16 indicate a large difference. Reciprocal differences with intermediate magnitudes, near 8, often have a random distribution of + and - prefixes and are also numerically inconsistent, indicating weakened expression of incompatibility by one or both parents, in either pollen or stigma, or both. It might also indicate a degree of female or male sterility, or possibly strong sensitivity to environmental influence.

The RD permits a person looking at the data of one cross to approximate data of the reciprocal. The alternative is to view simultaneously the data of both crosses (Tables 1 and 2), which is cumbersome and must be repeated each time data of the two crosses are compared, or are compared with data of other reciprocal crosses.

#### Classification of the S-allele Interactions (Chart 1: Step 8)

The S-allele interactions often approach one of two extremes (Table 3, and Wallace 1979): (1) codominance, i.e. simultaneous full activity of both S-alleles of the heterozygote, (2) dominance, i.e. full activity of one S-allele of the heterozygote with complete inactivity of the other. The term dominance and its inverse, recessiveness, are used herein even when the dominance is only partial, that is the more active allele has only 60 to near 100% activity, and/or when the recessive allele retains some activity, perhaps 1 to 30% (Wallace 1979). The S-allele interaction is called codominance when both alleles have near equal activities of about 75 to near 100% (Wallace 1979). Dominance is symbolized by  $S_a < S_b$ , and codominance by  $S_a = S_b$  (Tables 3 and 4).

Classification of the Sexual-Organ  $\times$  S-Allele-Interaction Types (Chart 1: Step 8)

Four classes of incompatibility in Brassica were described and designated as mode of inheritance for S-allele interaction Types I, II, III and IV by Thompson and Howard (1959) and Haruta (1962). They have been further discussed by Wallace and Nasrallah (1968), MacKay (1977), De Nettancourt (1977) and Frankel and Galun (1977). However, the interactions that occur between S-alleles are codominance and dominance (Table 3), and intermediate activities of one or both alleles as briefly described in the preceding paragraph and documented by Wallace (1979). Types I, II, III and IV are derived from the two S-allele interactions (codominance and dominance) in factorial combination with the two sexual organs (pollen<sup>1</sup> and stigma) (Table 3). To recognize these factorial components, in this paper and Wallace (1979) the types are redesignated as sexual-organ  $\times$  S-allele-interaction Types I, II, III and IV.

General Instructions for Determining the S-Allele Interactions and Sexual-Organ  $\times$  S-Allele-Interaction Types

Charts 2 and 3 present alternative procedures for completing Step 8 of Chart 1. Determining the S-allele interaction(s) and the sexual-organ  $\times$  S-allele-interaction type of the S-allele heterozygous genotype of an I<sub>1</sub> progeny

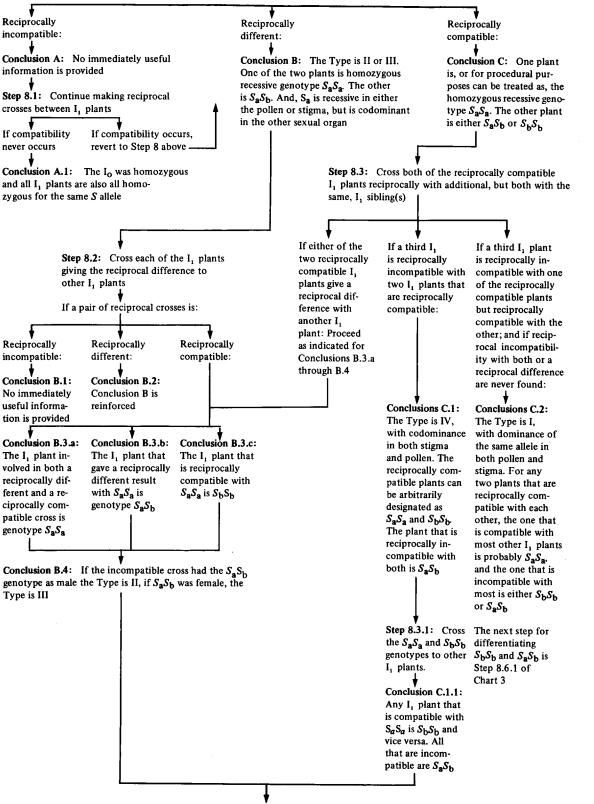
<sup>1</sup> A pollen grain is a single cell. It is not multicellular and differentiated, the usual criteria for designation as an organ. A pollen grain is an unusual cell; its two or three nuclei and cytoplasm migrate into a differentiated pollen tube. Sexual-organ was incorporated into the larger term 'sexual-organ  $\times$  S-allele-interaction' because sexual-organ presents a comprehensible concept to a firsttime reader; male-female  $\times$  S-allele interaction failed to do so, and pollen-stigma  $\times$  S-allele-interaction is too specific to include pollen-style  $\times$  S-allele-interaction types that may be recognized.

| Sexual-organ                  | S-allele interaction |               | Female                                           | Male                                                   |                                                            |  |
|-------------------------------|----------------------|---------------|--------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|--|
| X<br>S-allele-<br>interaction | Stigma<br>(?)        | Pollen<br>(ð) | genotype<br>and<br>phenotype <sup>b</sup><br>(?) | genotype<br>and<br>phenotype <sup>b</sup><br>(3)       |                                                            |  |
|                               |                      |               | S <sub>a</sub> S <sub>a</sub>                    | S <sub>a</sub> S <sub>a</sub> S <sub>a</sub><br>Inc Co | $< S_{\rm b} = S_{\rm b} = S_{\rm b} = S_{\rm b}$<br>m Com |  |
| I                             | dominance            | dominance     | $S_{a} < S_{b}$                                  | Com Inc                                                | Inc                                                        |  |
|                               |                      |               | s <sub>b</sub> s <sub>b</sub>                    | Com Inc                                                | Inc                                                        |  |
|                               |                      |               | S <sub>a</sub> S <sub>a</sub>                    | $S_a S_a S_a$<br>Inc $-$ Co                            | <s<sub>b S<sub>b</sub> S<sub>b</sub><br/>m Com</s<sub>     |  |
| 11                            | codominance          | dominance     | $S_a = S_b$                                      | Inc                                                    | Inc                                                        |  |
|                               |                      |               | s <sub>b</sub> s <sub>b</sub>                    | Com Inc                                                | Inc                                                        |  |
|                               |                      |               | S <sub>a</sub> S <sub>a</sub>                    | $S_a S_a = S_a$<br>Inc $\checkmark$ Inc                | $= S_b \qquad S_b S_b$                                     |  |
| III                           | dominance            | codominance   | $S_a < S_b$                                      | Com                                                    | Inc                                                        |  |
|                               |                      |               | s <sub>b</sub> s <sub>b</sub>                    | Com Inc                                                | Inc                                                        |  |
|                               |                      |               | S <sub>a</sub> S <sub>a</sub>                    | $S_a S_a S_a$<br>Inc                                   | $= S_b S_b S_b$<br>Com                                     |  |
| IV                            | codominance          | codominance   | $S_a = S_b$                                      | Inc                                                    | Inc                                                        |  |
|                               |                      |               | s <sub>b</sub> s <sub>b</sub>                    | Com Inc                                                | Inc                                                        |  |

**Table 4.** Expected incompatible and compatible interpretations and reciprocal difference interpretations<sup>a</sup> from reciprocal intercrosses among plants of the two homozygous and one heterozygous S-allele genotypes for sexualorgan  $\times$  S-allele interaction Types I, II, III and IV

<sup>a</sup> Reciprocal crosses with a reciprocal difference are indicated by ← - → and reciprocal crosses without a reciprocal difference by ← ---->

<sup>b</sup> The S-allele phenotype of heterozygotes is indicated by the symbols < and = where < specifies recessive vs. dominant and = indicates codominance. These phenotypes correspond with the described S-allele interactions in stigma and pollen. The phenotype for homozygotes always corresponds with the genotype


requires that the heterozygote be identified and reciprocally crossed with each of the two corresponding and identified S-allele homozygotes (Wallace 1979). Interpretation requires understanding of the sporophytic control over S-allele action, i.e. that the S-allele phenotype is the same for every pollen grain from an S-allele heterozygote, even though events after meiosis distributed one S-allele to half of the grains and the other S-allele to the other half<sup>2</sup>. This sameness of phenotype also applies for the S-allele activity (with dominance) or activities (with codominance) in the stigma (Wallace 1979).

The possibility of either codominant or dominant S-allele interaction occurring in the pollen and, independently of the same alternative codominant or dominant S-allele interactions occurring in the stigma, have been used to determine the incompatibility, compatibility and reciprocal-difference expectations for reciprocal crosses among the three  $I_1$  genotypes. These expectations are given for each of the sexual-organ  $\times$  S-allele-interaction Types I, II, III and IV (Table 4). The expectations, in turn, are used to interpret results from reciprocal crosses among the unknown genotypes of the  $I_1$  sibling populations and/or to interpret results for reciprocal crosses between the Io parent and the I<sub>1</sub> plants. This facilitates essentially simultaneous determinations of: (A) the codominance or dominance that occurs in the pollen and in the stigma of the S-allele heterozygotes, (B) the sexual-organ  $\times$  S-allele-interaction types, and (C) the S-allele genotypes of the  $I_1$ plants.

<sup>2</sup> This identical S-allele activity for every grain from an S-allele heterozygous plant, in spite of the S-allele genotype of the grain, is the basis for classifying the incompatibility of *Brassica* as sporophytically controlled. The identical activity for all grains is in sharp contrast to gametophytic control, where the S-allele activity of each pollen grain (male gamete) is fully dependent on the S-allele carried by that grain, i.e. upon its genotype (Wallace 1979).

Flow Chart 2. Procedures for identifying the S-allele genotypes and the sexual organ  $\times$  S-allele-interaction types using reciprocal crosses among I<sub>1</sub> plants are:

Step 8 (Continued from Chart 1): If the crosses between two I, plants are:



The next step in developing S-allele homozygous inbreds is Step 9 of Flow Chart 1

# Genotype and Type Identification Using Reciprocal Crosses Among $I_1$ Siblings

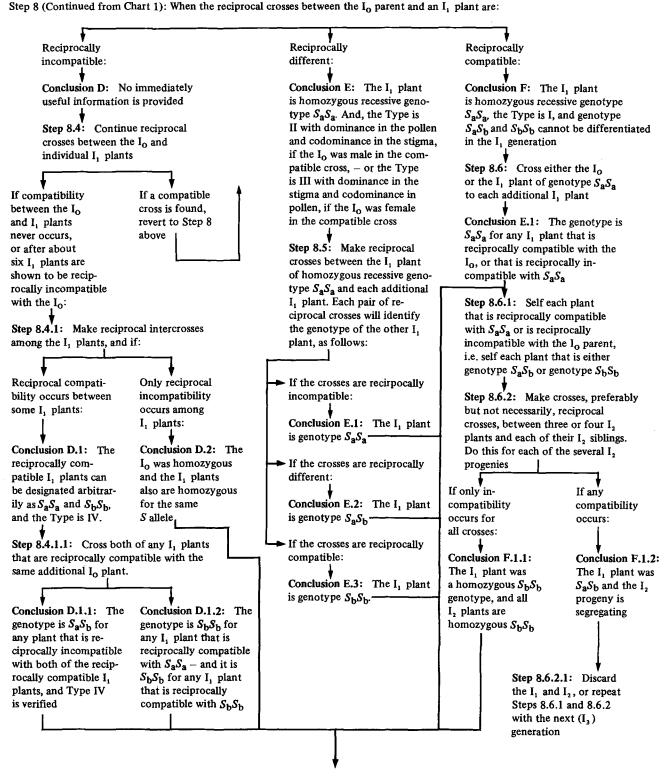
When two  $I_1$  plants are reciprocally crossed, three combinations of incompatible and compatible results can occur: (A) both crosses may be incompatible (reciprocally incompatible), (B) one may be incompatible while the other is compatible (reciprocally different), or (C) both crosses may be compatible (reciprocally compatible). These results respectively give rise to conclusions A, B and C (Chart 2: Step 8). Each conclusion dictates a different series of reciprocal crosses and expected results for efficiently determining S-allele genotypes of the  $I_1$  plants, and the sexual-organ  $\times$  S-allele-interaction type of the heterozygote.

When Reciprocal Incompatibility Occurs Between Two  $I_1$ Siblings (Chart 2: Conclusion A)

Reciprocal incompatibility provides no information that is immediately effective in identifying either the S-allele genotype or the sexual-organ  $\times$  S-allele-interaction type. However, the incompatible results will assist with identifying and/or verifying the genotype of these plants and also the type, after the genotypes of several  $I_1$  plants have been determined. The next step is reciprocal crosses between new pairings among  $I_1$  plants (Chart 2: Step 8.1). If compatibility occurs between any two I<sub>1</sub> plants, revert to instructions for determining genotypes and type when compatibility occurs (Chart 2: Conclusion B or C). Until compatibility is found, as each  $I_1$  plant comes into flower, it is most efficient to cross it: (A) with an  $I_1$  previously crossed reciprocally with one  $I_1$  sibling, and (B) with an  $I_1$  not yet crossed with any sibling. The resultant two reciprocal-cross pairs for each I<sub>1</sub> plant test the S-allele activity in both its pollen and stigma, and form a chain in which these activities are tested against the S-allele-activities of all other  $I_1$  plants. This reciprocal-cross chain is both minimal and sufficient for demonstrating that all the  $I_1$  plants have the same S-allele activity. Incompatibility of the full chain demonstrates that each  $I_1$  is homozygous for the same S-allele, and that the I<sub>o</sub> parent was an S-allele homozygote (Chart 2: Conclusion A.1).

When a Reciprocal Difference Occurs (Chart 2: Conclusion B)

From the S-allele genotypes  $S_aS_a$ ,  $S_aS_b$ , and  $S_bS_b$  within a segregating I<sub>1</sub> progeny, three reciprocal crosses can be made between two genotypes (Table 4). There are four sexual-organ  $\times$  S-allele-interaction types, so there are twelve combinations of reciprocal-cross results (Table 4). A reciprocal difference occurs for only two of the twelve results, one for Type II and one for Type III (Table 4). It


appears when: codominance occurs in the stigma (Type II, Table 4) or in the pollen (Type III, Table 4) of genotype  $S_aS_b$ , while dominance occurs in the other (pollen or stigma), - and when this heterozygote is reciprocally crossed with the homozygous recessive genotype  $S_aS_a$  (Table 4). These two pairs of reciprocal crosses (one each for Types II and III) are the only reciprocal crosses between two  $I_1$  plants which directly indicate, by the reciprocal difference, the exact genotypes of the two I<sub>1</sub> plants and which simultaneously give an indication of the sexualorgan  $\times$  S-allele-interaction type. The reciprocal difference does not indicate which  $I_1$  plant is  $S_a S_a$  and which is  $S_aS_b$ , or whether the Type is II or III (Table 4). However, it facilitates tentative assignment to both  $I_1$  plants of  $S_a S_a$ or  $S_aS_b$ , and also of sexual-organ  $\times$  S-allele-interaction Type II or III. This is a more complete step toward final genotype assignment (Chart 2: Conclusion B) than data from any other self, cross or pair of reciprocal-cross pollinations between two  $I_1$  plants can provide.

To achieve positive identification of the genotypes, both I<sub>1</sub> plants giving the reciprocal difference are reciprocally crossed to additional  $I_1$  plant(s) (Chart 2: Step 8.2). To conform to an essential procedure when reciprocal compatibility occurs (Step 8.3), both plants are crossed to the same additional  $I_1$  plant(s). If either of the two  $I_1$ plants with the reciprocal difference is reciprocally compatible with a third  $I_1$  plant (plant C), the genotypes of all three  $I_1$  plants can be assigned. Plant A, with a reciprocal difference with I1 plant B and with reciprocal compatibility with I<sub>1</sub> plant C is the homozygous recessive genotype  $S_aS_a$  (Conclusion B.3.a). Plant B, the second parent of the cross with the reciprocal difference is  $S_aS_b$  (Conclusion B.3.a). And, C which was reciprocally compatible with A, i.e. with genotype  $S_aS_a$ , is the homozygous dominant genotype  $S_b S_b$  (Conclusion B.3.c). The next procedure (Step 8.5) for identifying genotypes of the remaining  $I_1$  plants is presented in detail under: When a Reciprocal Difference Occurs Between the  $I_0$  and  $I_1$  Plant (Chart 3: Conclusion E)

After the recessive and heterozygous genotypes have been specifically identified, the sexual-organ  $\times$  S-allele-interaction type of the heterozygote can be determined. Its Type is II if  $S_aS_b$  was male in the compatible cross, and III if  $S_aS_b$  was female (Chart 2: Conclusion B.4).

When Reciprocal Compatibility Occurs Between  $I_1$ Siblings (Chart 2: Conclusion C)

With reciprocal compatibility between two  $I_1$  plants, one must be genotype  $S_aS_a$  which is one parent of all reciprocally compatible crosses (Table 4), and the other will be either  $S_aS_b$  or  $S_bS_b$  (Table 4, and Chart 2: Conclusion C). Reciprocal compatibility between  $I_1$  plants occurs within all four types, so type is not indicated. Next, the two Flow Chart 3. Procedures for identifying the S-allele genotypes and the sexual-organ  $\times$  S-allele-interaction types using reciprocal crosses between the I<sub>0</sub> parent and individual I<sub>1</sub> plants.<sup>a</sup>



The next step in developing S-allele homozygous inbreds is Step 9 of Flow Chart 1

<sup>&</sup>lt;sup>a</sup> These procedures and conclusions are derivable from Table 4

reciprocally compatible  $I_1$  plants are reciprocally crossed to the same additional  $I_1$  plant(s) (Chart 2: Step 8.3). Crossing both to the same third (and if reciprocal compatibility again occurs, fourth, fifth, etc.)  $I_1$  sibling is emphasized by the italics. Only this procedure, other than reciprocal crosses with the  $I_0$  parent, can indicate that the heterozygous genotype  $S_aS_b$  is of sexual-organ  $\times$  S-alleleinteraction Type IV. A further merit is that it always facilitates identification of all four types.

If either of two reciprocally compatible  $I_1$  plants gives a reciprocal difference in crosses to a third  $I_1$  plant C, plant A which is reciprocally different with C and reciprocally compatible with B is the homozygous recessive genotype  $S_aS_a$  (Chart 2: Step 8.3; Conclusion B.3.a); plant B is  $S_bS_b$  (Conclusion B.3.c); and plant C is  $S_aS_b$  (Conclusion B.3.b). The reciprocal difference indicates Type II or III. It is Type II if  $S_aS_b$  was male in the incompatible cross, and III if it was female (Conclusion B.4).

An  $S_aS_b$  plant of Type IV has codominance in both pollen and stigma (Table 4). With codominance in both sexual organs,  $S_a S_b$  is reciprocally incompatible with both homozygotes, and only the two homozygotes are reciprocally compatible (Table 4). Therefore, when two reciprocally compatible  $I_1$  plants A and B are both reciprocally incompatible with a third  $I_1$  plant C: the Type is IV; plant C is  $S_a S_b$ ; and plants A and B are homozygous genotypes  $S_aS_a$  and  $S_bS_b$ , with  $S_a$  and  $S_b$  designations being arbitrary because there is no recessive (or dominant) S-allele (Chart 2: Conclusion C.1). If the reciprocal difference and pollen tube penetration data in the interpretative diallel table (Table 1) suggest that one allele may be less active in the heterozygote than the other, then the homozygote with this less active allele should be designated SaSa.

The Type is I (Chart 2: Conclusion C.3) if a third  $I_1$  plant is reciprocally compatible with one of the reciprocally compatible plants but is reciprocally incompatible with the other – if a reciprocal difference does not occur for any of the possible reciprocal crosses between two  $I_1$  plants. Accepting no reciprocal difference for the population requires that each of the two reciprocally compatible  $I_1$  plants be crossed reciprocally with four or five additional  $I_1$  plants. If more than one pair of  $I_1$  plants are reciprocally compatible, both of each pair can be reciprocally crossed with two or three additional  $I_1$  plants. No reciprocal difference can be accepted for the population if it does not occur in these crosses.

# Genotype and Type Identification Using Reciprocal Crosses Between the $I_o$ Parent and $I_1$ Plants

When an  $I_0$  is reciprocally crossed with one of its  $I_1$  progeny there are again three possible results: reciprocal incompatibility, a reciprocal difference, or reciprocal compatibility. Respectively, these give conclusions D, E and F (Chart 3: Step 8), which each dictates different procedures for identifying genotypes and type.

When Reciprocal Incompatibility Occurs Between the  $I_o$ and an  $I_1$  Plant (Chart 3: Conclusion D)

If the  $I_0$  is reciprocally incompatible with an  $I_1$  plant, no immediately useful conclusion can be drawn. The Io is next reciprocally crossed with additional I<sub>1</sub> plants (Chart 3: Step 8.4), and if compatibility occurs instruction for compatible crosses (Conclusion E or F) should be followed. When compatibility has not occurred in reciprocal crosses between the  $I_0$  and five or six  $I_1$  plants, it is probable that the Type is IV, or that the Io was an S-allele homozygote. The I<sub>o</sub> parent cannot distinguish between these alternatives, but a chain of reciprocal crosses among the  $I_1$  siblings can. The chain (Step 8.4) is made by reciprocally crossing each plant with each of two  $I_1$  sibs, as described in detail for Conclusion A. If two reciprocally compatible  $I_1$  plants are now found, one can arbitrarily be designated  $S_aS_a$ , the other  $S_bS_b$ , and tentatively the Type is IV. These designations and Type IV will be verified if both reciprocally compatible  $I_1$  plants are reciprocally incompatible with the I<sub>o</sub> parent (Conclusion D.1), or if both are reciprocally incompatible with a third  $I_1$  plant (Conclusion C.1). After verifying Type IV, the genotype is  $S_aS_a$  for any plant that is reciprocally compatible with  $S_bS_b$ , and vice versa (Conclusion D.1.2 or C.1.1), and all others are  $S_a S_b$  (Conclusion D.1.1 or C.1.1). Reciprocal compatibility is not essential for conclusion D.1.1, when Type IV has already been shown (Table 4), but reciprocal crossing is suggested for conformity with its general requirement.

If only reciprocal incompatibility occurs for the chain of reciprocal crosses among the  $I_1$  plants (Step 8.4.1), the  $I_0$  was homozygous and each  $I_1$  plant is homozygous for the same S-allele (Conclusion D.2).

When a Reciprocal Difference Occurs Between the  $I_0$  and an  $I_1$  Plant (Chart 3: Conclusion E)

With a reciprocal difference between the  $I_o$  and an  $I_1$  plant, the  $I_o$  is a 'known' heterozygote  $S_aS_b$  so the  $I_1$  must be recessive  $S_aS_a$ , and the sexual-organ  $\times$  S-allele-interaction Type is II, or III (Table 4, and Chart 3: Conclusion E). It is II if the  $I_o$  (known genotype  $S_aS_b$ ) was male in the compatible and female in the incompatible cross, and it is III if it was female in the compatible and male in the incompatible cross (Conclusion E).

After indentifying the recessive  $S_aS_a$  genotype, subsequent reciprocal crosses should be between it and other  $I_1$  plants (Step 8.5). For sexual-organ  $\times$  S-allele-interaction

Types II and III, each reciprocal-cross pair between the recessive  $S_aS_a$  and another I<sub>1</sub> plant will always identify the genotype of the other  $I_1$  plant. If the crosses are reciprocally incompatible, the other plant is also  $S_aS_a$ (Conclusion E.1). If one cross is compatible while its reciprocal is incompatible, the other  $I_1$  is  $S_a S_b$  (Conclusion E.2). And, if the two crosses are reciprocally compatible, the other  $I_1$  is dominant genotype  $S_b S_b$  (Conclusion E.3). Reciprocal crosses between a known genotype  $S_a S_b$  or  $S_b S_b$  and plants of unknown genotype are far less informative than crosses to a known  $S_aS_a$  (Tables 2 and 4). Reciprocal crosses between a known  $S_aS_b$ , including the  $I_0$  parent, and each  $I_1$  plant will only identify more plants of recessive genotype  $S_aS_a$ . Dominant  $S_bS_b$  cannot be identified except by a previously identified recessive  $S_aS_a$  (Tables 2 and 4; Chart 3: Conclusion E.3).

When Reciprocal Compatibility Occurs Between the  $I_o$ and an  $I_1$  Plant (Chart 3: Conclusion F)

If the  $I_0$  is reciprocally compatible with an  $I_1$  plant: (A) the  $I_1$  plant is homozygous recessive  $S_aS_a$ ; (B) the Type is I; and (C) genotypes  $S_aS_b$  and  $S_bS_b$  cannot be differentiated in the  $I_1$  generation (Conclusion F). Inability to differentiate is because Type I has dominance of allele  $S_b$ in both pollen and stigma, so the incompatibility phenotypes of  $S_aS_b$  and  $S_bS_b$  are identical (Table 4). Differentiation can be achieved in the  $I_2$  generation, by segregation of  $S_aS_b$  (Conclusion F.1.2) vs. failure to segregate for  $S_bS_b$  (Conclusion F.1.1). Any  $I_1$  plant that is incompatible with the  $I_1$  of  $S_a S_a$  genotype, or that is compatible with the  $I_0$ , is genotype  $S_aS_a$  (Conclusion F.1.).

# Summary of Merit of the $I_0$ Parent as a 'Known' Genotype

No identified S-allele genotype exists within an  $I_1$  population, but the  $I_0$  is  $S_a S_b$  if compatibility occurs between it and any  $I_1$  plant, or between any two  $I_1$  plants. A prerequisite for genotype identification is that an  $I_1$  which is  $S_aS_a$  be one parent of the minimal required one pair, or of both of the minimal required two pairs, or of two of the minimal required three pairs of reciprocal crosses. That  $S_aS_a$  is a parent is evidenced whenever compatibility occurs for one or both of a pair of reciprocal crosses. The expected proportions among  $I_1$  plants are 1/4:1/2:1/4 for  $S_aS_a$ ,  $S_aS_b$  and  $S_bS_b$ . With the I<sub>o</sub> as a known  $S_aS_b$ , the one required  $I_o \times I_1$  reciprocal-cross pair is  $S_a S_b \times S_a S_a$ . It is directly recognized by a reciprocal difference for Types II and III and by reciprocal compatibility for Type I. Therefore, for Types I, II and III, each  $I_0 \times I_1$  reciprocal-cross pair has 1/4 chance of identifying the  $S_aS_a$  genotype, with 3/4 chance of failing. For reciprocal crosses between the  $I_o$  and two  $I_1$  plants the chance of identifying  $S_aS_a$  is  $7/16 = [1-(3/4)^2]$  and for three it is  $37/64 = [1-(3/4)^3]$ .

Identifying  $S_aS_a$  from reciprocal crosses among only  $I_1$  plants requires for Types II and III, which have dominance in the pollen and codominance in the stigma, or vice virsa, a minimum of two reciprocal-cross pairs among three  $I_1$  plants. The restrictions are that  $S_aS_a$  must be a parent of both pairs of reciprocal crosses and that the two pairs involve one plant of each of the three  $I_1$  genotypes as follows:  $S_aS_a \times S_aS_b$  and  $S_aS_a \times S_bS_b$ . Either reciprocal-cross pair may precede the other, so the chance of identifying  $S_aS_a$  with only two tandemly performed reciprocal-cross pairs is  $[2 \times (1/4 \times 1/2) \times (1/4)] = 1/16$ . This is seven times less efficient than two  $I_o \times I_1$  reciprocal-cross pairs.

For Type I, with dominance in both pollen and stigma, identifying  $S_aS_a$  from reciprocal crosses among  $I_1$  plants requires a minimum of three tandemly performed reciprocal-cross pairs among three  $I_1$  plants as follows:  $S_aS_a \times$  $S_aS_b$ ,  $S_aS_a \times S_bS_b$  and  $S_aS_b \times S_bS_b$ . The restrictions are that  $S_aS_a$  must be a parent of the first and also of either the second or third reciprocal-cross pair, and also that the three  $I_1$  plants include one each of  $S_aS_a$ ,  $S_aS_b$  and  $S_bS_b$ . The probability is again 1/16, being derived exactly as for Types II and III, since the required two crosses with  $S_aS_a$ are the same and when both are achieved the procedure makes the third required cross 100% available. This is 9.25 times less efficient than three pairs of  $I_0 \times I_1$  reciprocal crosses will identify an  $I_1$  of  $S_aS_a$  genotype.

The three tandemly performed reciprocal-cross pairs required for Type I are also required for Type IV, with the same 1/16 probability of success. In contrast to Type I, however, this probability of 1/16 is infinitely more efficient than using reciprocal crosses of the  $I_0 \times I_1$ , because the codominance in both pollen and stigma of the heterozygote causes all  $I_0 \times I_1$  crosses to be reciprocally incompatible, so no  $I_1$  genotype can be identified from  $I_0 \times I_1$  crosses.

In summary,  $S_aS_a$  is the key  $I_1$  genotype; it must always be recognized before another  $I_1$  genotype can be identified (Thompson and Howard 1959).  $I_0 \times I_1$  reciprocal crosses are 9.25 times as efficient at identifying  $S_aS_a$  than  $I_1 \times I_1$  reciprocal crosses for Type I, and 7.0 times more efficient for Types II and III, but infinitely less efficient for Type IV. The choice as to whether to use  $I_0 \times I_1$  or  $I_1 \times I_1$  reciprocal crosses depends in part, therefore, on the relative proportions of Types I, II, and III vs. Type IV. Type IV commonly accounts for about 25% or less of the observed sexual-organ  $\times$  S-allele interaction types, and reciprocal incompatibility for crosses between the  $I_0$  and six or seven  $I_1$  plants clearly indicates a necessity to change to reciprocal crosses among the  $I_1$  plants. Thus, with 7.0 to 9.25 fold higher efficiency for  $I_0 \times I_1$  reciprocal

crosses for about 75% of all  $I_1$  populations, there is a large advantage for using the  $I_0$  if it can be brought into flower for a second time that is also simultaneous with flowering of its  $I_1$  progeny.

# Progenies for Which S-Allele Genotypes Cannot be Easily Identified

The sexual-organ  $\times$  S-allele-interaction Types I, II, III and IV are extremes; the heterozygotes have highly active (codominant or dominant) or highly inactive (recessive) S alleles, and both alleles are highly active in the homozygous genotypes. The breeder must recognize that heterozygotes exist that are intermediate between these types, including extreme mutual weakening of both S-alleles (Wallace 1979). These intermediates can be common in populations with many highly recessive S-alleles (Webster 1973). and the alleles may not be fully active homozygotes. It is for this reason that Io plants lacking high self incompatibility should preferably be discarded directly. I, progenies from heterozygotes of such intermediate types will have intermediate levels of reciprocalness and variable and poorly repeatable intensities of self- and sib-incompatibility. Such progenies will not have sufficiently high selfand sib-incompatibility of the homozygotes, or of the heterozygotes, to warrant the greater effort required for identifying the S-allele genotypes. For such progenies using the I<sub>o</sub> as a known heterozygous S-allele genotype may assist identification of the  $I_1$  genotypes by more than the expected 7.0 to 9.25 increases in efficiency.

# Selecting Homozygous S-Allele Genotypes Without Determining the Type

A procedure previously used for selecting S-allele homozygotes is to self each  $I_1$  plant, make diallel crosses among all plants within each  $I_2$  progeny, and select the  $I_2$  progenies that have reciprocal sib-incomaptibility among all  $I_2$  plants. Such selection has usually been done with a full diallel, but a chain of reciprocal crosses among all I<sub>2</sub> plants as described herein could suffice. Thirteen  $I_2$  progenies are required to give 95% probability of identifying at least one  $I_2$  population that is homozygous for each of the two S alleles. On the average half of these  $I_2$  progenies will have sib-incompatibility among all plants, and half of these will be genotype  $S_aS_a$  and half  $S_bS_b$ . That one homozygous  $I_2$  population is  $S_aS_a$  and a second is  $S_bS_b$  is proven when several intercrosses between plants of two truebreeding  $I_2$  progenies consistently show reciprocal compatibility. These procedures do not differentiate between the dominant and recessive alleles, so the  $S_aS_a$  and  $S_{\rm b}S_{\rm b}$  designations will be arbitrary, and sexual-organ imes

S-allele-interaction types will not be determined. Failure to identify recessive and dominant alleles and the sexualorgan  $\times$  S-allele-interaction type prevents planning for production of 3- and 4-way hybrids, particularly since instances of mutual weakening between S alleles are not detected. Using the reciprocal-cross procedures outlined herein requires less total effort and gives more complete information.

### Using the Seed Set Data

Of the flowers pollinated for each cross or self, some are left on the plant until maturity. About 60 days after pollination, when the pods are mature but before they shatter. the mature pods should be removed along with the stringheld label that identifies the pollination. The pods for each pollination should be put in an envelope or bag. along with the label. The seeds should then be threshed and placed in a small envelope to which the label is attached with transparent tape. The number of pods and the total seed count should be recorded on the envelope. For comparisons with the pollen-tube penetration data, this information can be recorded on line 4 of the cell of the second-interpretative table that identifies the o+ and oparents and the specific pollination (Table 2). Recording seed set data on the second- (Table 2) rather than firstinterpretative table (Table 1) is preferred because subsequent transferral of data is never required, and because interpretation is easier when all data for all plants of the same genotype are adjacent and arranged for a diallel cross among known  $S_aS_a$ ,  $S_aS_b$  and  $S_bS_b$  genotypes (as illustrated in Table 2).

The seed-set data will usually confirm the pollen tube data. When discrepancies occur and recording of data in the wrong cell has been eliminated, the seed set may be given the stronger consideration. It is lack of seed set from self- and sib-pollinations and abundance of seed set from outcrosses, not number of pollen tube penetrations, that are the primary considerations for hybrid seed production. However, a decision to rely on the seed set data requires full acceptance of these data. Table 1 of Wallace (1979) indicates general agreement between data for pollen tube scores and seed set data. Table 2 of this paper, however, indicates some major discrepancies; physiological or environmental perturbations obviously reduced the seed set of some well documented expressions of compatibility. Such reductions can result from water stress, insect damage or physiological and other environmental effects that occur after pollen tube germination. The breeder should only continue development of an inbred line when the seed set data and pollen tube penetration data are in reasonable agreement, or when a reasonable and acceptable explanation for discrepancies is available.

If desired, reciprocal differences can be calculated

from the reciprocal seed sets (see text and Table 1 of Wallace 1979).

### Selecting for or Against Modifying Genes in Inbreds

Several studies indicate an effect of genes at other than the S-locus on the level of expressed incompatibility in Brassica. Thompson and Taylor (1971) and Nasrallah (1974) have each identified a gene for which the dominant allele weakens expression of incompatibility. It is not known if these were the same or different modifying genes. Thompson concluded that the dominant allele weakened expression of only  $S_{15}$  and other S alleles that are generally highly recessive. The dominant allele of the gene Nasrallah studied modified activity of his allele  $S_2$  in the stigma; it did not alter  $S_2$  activity in the pollen. The dosage effect of this allele was additive; one dominant allele conditioned quantities of an  $S_2$ -specific antigen in the stigma, and seed sets, that were intermediate to levels in plants homozygous for the recessive and dominant alleles. Thus, the allele is dominant only in that one dose overcomes expression of incompatibility vs. compatibility on an either-or basis; it is partially dominant when incompatibility vs. compatibility is considered on a continuous scale. Nasrallah and Wallace (1968), Thompson and Taylor (1971), Richards and Thurling (1973a), Nasrallah (1974) and Haruta (1962) have all demonstrated modification of the strength of incompatibility by an apparent polygenic complex.

The procedures described in this paper permit positive identification in the  $I_1$  generation of the homozygous and also heterozygous S-allele genotypes. This facilitates selection among  $I_1$  plants of the same genotype for strength of sib- and self-incompatibility, and further such selection among plants of each I2 or later-generation progeny (Chart 1: Steps 9-10). Because the S-allele genotypes are known and fixed, any variation in strength within the  $I_2$ generation and variation or change within successive generations must result from segregation of modifying genes (Johnson 1972). Thus, the described procedures will greatly improve efficiency of selecting Brassica inbreds for the strong incompatibility needed. The procedures described herein are newly available, so more experience is required before the best additional steps for selecting the appropriate modifying genes can be detailed. As suggested by Johnson (1971, 1972 a,b) the intensities of self- and sib-incompatibility of early, intermediate and late flowering of each inbred, and under different temperatures and humidities, should all be determined (Chart 1: Step 10).

#### Planning for 3- and 4-Way Hybrids

Primary requirements for producing 3- and 4-way hybridids are a single-cross  $F_1$  that is highly self- and sib-

incompatible, and for some *Brassica* crops, similarity of the two inbred parents of each single cross hybrid for horticultural characteristics in order to maintain uniformity in the 3- and 4-way hybrids approaching that of single-cross hybrids. Both requirements are facilitated by identifying the S-allele genotypes and sexual-organ  $\times$  S-allele-interaction types in the I<sub>1</sub> generation.

The strength of self- and sib-incompatibility among plants within each of the homozygous genotypes  $S_aS_a$  and  $S_bS_b$ , and also among plants within the heterozygous  $S_aS_b$ , will be largely determined simultaneous with identification of the S-allele genotypes. A chain of reciprocal crosses among the I<sub>1</sub> plants within each genotype may suffice for determining the intensities of sib-incompatibilities. A complete diallel among all I<sub>1</sub> plants within each genotype as previously advocated (MacKay 1977) will be more informative, but is not essential. The I<sub>1</sub> data about self- and sib-incompatibility of the  $S_aS_b$  genotype will greatly facilitate planning for production of 3- and 4-way hybrids, since this commercial seed will be produced on genotype  $S_aS_b$  (Chart 1: Step 12).

For maximizing uniformity and capitilizing on the incompatibility data acquired during S-allele identification, it is assumed that the *Brassica* breeder will choose to make the 3- and 4-way hybrids using inbreds derived from the same  $I_o$  parent. The acquired incompatibility data permits more effective selection within the  $S_aS_a$  and  $S_bS_b$  genotypes in  $I_1$ , and especially in  $I_2$ , for similarity of horticultural characteristics, optimum nicking of flowering times, for maximum seed set from crossing and for  $F_1$  hybrid vigor. A definite advantage from use of such closely related inbreds may be better cross pollination, because bees may be unable to differentiate between flowers of the two closely related inbreds (Faulkner et al. 1977).

The knowledge acquired during genotype identification about the reciprocal compatibility, reciprocal incompatibility, or the reciprocal difference between the S-allele heterozygote and each of its counterpart homozygotes permits planning to produce most of the single-cross seed using the inbred with the dominant allele as the female parent. This is desirable because any unintended selfs in the single-cross will all be reciprocally incompatible with all actual single-crosses, thus permitting near-total elimination of inbreds in the 3- or 4-way hybrid seed. When a recessive homozygote is the female parent of the singlecross used as female parent of a 3- or 4-way hybrid, any unintended selfs within the single cross will be reciprocally compatible with the single cross for Type I (Table 4), and compatible in one direction but incompatible in the other for Types II and III (Table 4). Type IV is most desirable for use as female parent of the single-cross used in producing a 3- or 4-way hybrid, since the single cross is reciprocally incompatible with both of its homozygous inbred parents.

## Other Aspects of Producing Hybrid Brassica Seed

It is procedures for identifying the S-allele genotypes and sexual-organ  $\times$  S-allele-interaction types in the I<sub>1</sub> generation (Chart 1: Step 8 – expanded in Charts 2 and 3), and the advantages derivable therefrom, that are discussed herein. Most aspects of matching inbreds, selecting for or adjusting the nicking of flowering and numerous mechanical procedures for producing single-cross and 3- and 4-way hybrids have not been adequately discussed (Chart 1: Steps 11-16), and indeed have never been written about in detail. Cursory coverage has been given to some aspects (Thompson 1964; Johnson 1972 a, b; Nieuwhof and Garretsen 1975; Carter and McNeilly 1975; Faulkner et al. 1977; Roggen and van Dijk 1976; Gowers 1975; Ockendon 1978).

#### Acknowledgement

Appreciation is due: Susan Fast for pollinations; Bruce Rich for microscopical observations; Steffie David for typing many versions of the manuscript. The authors thanks J. Hawk, E. Kueneman, Georgia Voss, for concepts incorporated into the manuscript, and numerous colleagues and seedsmen for reviews. This work was partially supported by grants from J. Harris Company, Inc. and from Agway, Inc.

#### Literature

- Arasu, N.T.: Self-incompatibility in angiosperms: A review. Genetica 39, 1-24 (1968)
- Carter, A.L.; McNeilly, T.: Increased atmospheric humidity post pollination: A possible aid to the production of inbred lines from mature flowers in the Brussels sprout (*Brassica oleracea* var. 'gemmifera'). Euphytica 25, 531-536 (1975)
- Faulkner, G.J.; Smith, B.M.; Daycott, A.: Matching inbred lines of Brussels sprouts for flowering characteristics as an aid to improving F<sub>1</sub> hybrid seed production. Ann. Appl. Genet. 51, 21-28 (1977)
- Ferrari, T.E.; Wallace, D.H.: A model for self-recognition and regulation of the incompatibility response of pollen. Theor. Appl. Genet. **50**, 211-225 (1977)
- Frankel R.; Galun, E.: Pollination mechanisms, reproduction and plant breeding. Berlin Springer 1977
- Gowers, S.: Methods of producing F<sub>1</sub> hybrid swedes (Brassica napus ssp. rapifera). Euphytica 24, 537-541 (1975)
- Haruta, T.: Studies on the genetics of self- and cross-incompatibility in cruciferous vegetables. (English transl. available from Minneapolis, Minn.: Northrup, King & Co. Takii Plant Breed. and Exp. Sta., Kyoto, Japan. Res. Bul. 2 (1962)
- Heslop-Harrison, J.: The physiology of the incompatibility reaction in the *Cruciferae*. In: Proc. Eucarpia Meeting Cruciferae 1974 (eds. Willis, A.B.; North, C.), Invergowrie, Dundee: Scottish Res. Inst., 14-18 (1974)
- Heslop-Harrison, J.: Incompatibility and the pollen-stigma interaction. Ann. Rev. Plant Physiol. 26, 403-425 (1975)

- Heslop-Harrison J.: Male gametophyte selection and the pollenstigma interaction. In: Gamete Competition in Plants and Animals (ed. Mulcahy, D.L.), pp. 177-189. North-Holland Publ. Co.: Amsterdam, The Netherlands 1975a
- Johnson, A.G.: Factors affecting the degree of self-incompatibility in inbred lines of Brussels sprouts. Euphytica 20, 561-573 (1971)
- Johnson, A.G.: Problems in breeding and seed production of hybrid sprouts. The Commercial Grower. 24, 749-750 (1972)
- Johnson, A.G.: Overcoming problems of incompatibility. The Commercial Grower. 1, 787-789 (1972a)
- Johnson, A.G.: Alternative approaches which keep down seed costs. The Commercial Grower 1972b
- Johnson, A.G.; Blyton-Conway, J.: Inbred lines with dominant incompatibility alleles for use as parents of F<sub>1</sub> hybrid Brussels sprouts. Euphytica 25, 175-183 (1976)
- Kho, Y.O.; Baer, J.: Observing pollen tubes by means of fluorescence. Euphytica 17, 298-302 (1968)
- Lawson, J.; Williams, W.: The effect of genotype on levels of pseudo-compatibility and the production of improved varieties in *Brassica oleracea*. J. Hort. Sci. 51, 123-132 (1976)
- MacKay, G.R.: A diallel cross method for the recognition of S-allele homozygotes in turnip, *Brassica campestris* L. ssp rapifera. Heredity 38, 201-208 (1977)
- Nasiallah, M.E.: Genetic control of quantitative variation in selfincompatibility proteins detected by immunodiffusion. Genetics 76, 45-50 (1974)
- Nasrallah, M.E.; Wallace, D.H.: The influence of modifier genes on the intensity and stability of self-incompatibility in cabbage. Euphytica 17, 495-503 (1968)
- Nettancourt, D. de: Self-incompatibility in basic and applied researches with higher plants. Genetica Agraria 26, 163-216 (1972)
- Nettancourt, D. de: Incompatibility in Angiosperms. Berlin-Heidelberg-New York: Springer 1977
- Nieuwhof, M.; Garretsen, F.: Hybrid breeding in early spring cabbage (*Brassica oleracea* var. 'capitata' L.F. alba D.C.). II. Euphytica 24, 87-97 (1975)
- Ockendon, D.J.: Dominance relationships between S alleles in the stigmas of Brussels sprouts (*Brassica oleracea* var. 'gemmifera'). Euphytica 24, 165-172 (1975)
- Ockendon, D.J.: Rare self-incompatibility alleles in a purple cultivar of Brussels sprouts. Heredity 39, 149-152 (1977)
- Ockendon, D.J.: The production of inbred lines of Brussels sprouts with dominant S alleles. Euphytica 26, 749-754 (1977a)
- Ockendon, D.J.: Effect of hexane and humidity on self-incompatibility in *Brassica oleracea*. Theor. Appl. Genet. **52**, 113-117 (1978)
- Pearson, O.H.: Breeding plants of the cabbage group. Calif. Agr. Exp. Sta. Bul. 532. (1932)
- Richards, R.A.; Thurling, N.: The genetics of self-incompatibility in *Brassica campestris* L. ssp *oleifera* Metzg. I. Characteristics of S-locus. Control of self-incompatibility. Genetica 44, 428-438 (1973)
- Richards, R.A.; Thurling, N.: The genetics of self-incompatibility in *Brassica campestris* L. *ssp. oleifera* Metzg. II. Genotypic and environmental modification of S locus control. Genetica 44, 439-453 (1973a)
- Roggen, H.; van Dijk, A.J.: Thermally aided pollination: New method of breeding self-incompatibility in *Brassica oleracea* L. Euphytica 25, 643-646 (1976)
- Smith, B.M.; Johnson, A.G.; Conway, J.: Inbred lines with stronger self-incompatibility. National Vegetable Research Station,

#### D.H. Wallace: Identifying S-Allele Genotypes

Wellesbourne, Warwick, England. Ann. Rep. pp. 22-23 (1977) Thompson, K.F.: Triple-cross hybrid kale. Euphytica 13, 173-177 (1964)

- Thompson, K.F.: Classified S alleles for Brassica breeders. In: Proceedings of Brassica Meeting of Eucarpia. (ed. Dixon, G.E.) pp. 25-28 (1968)
- Thompson, K.F.; Howard, H.W.: Self-incompatibility in narrowstem kale, *Brassica oleracea* var. 'acephala'. II. Methods for the recognition in inbred lines of plants homozygous for S alleles. J. Genet. 56, 324-340 (1959)
- Thompson, K.F.; Taylor, J.P.: Self-incompatibility in kale. Heredity 27, 459-471 (1971)
- Townsend, C.E.: Advances in the study of incompatibility. In: Pollen: Development and Physiology. (ed. Heslop-Harrison, J.) London Butterworths 1971
- Visser, D.L.: The effect of alternating temperatures on the selfincompatibility of some clones of Brussels sprouts (*Brassica* oleracea L. var. gemmifera' (D.C.) Schulz). Euphytica 26, 273-277 (1977)

- Wallace, D.H.: Interaction of S alleles in sporophytically controlled self incompatibility of *Brassica*. Theor. Appl. Genet. 54, 193-201 (1979)
- Wallace, D.H.; Nasrallah, M.E.: Pollination and serological procedures for isolating incompatibility genotypes in the crucifers. Cornell Univ. Agr. Exp. Sta. Memoir 406, 23 pp. (1968)
- Webster, J.C.: The use of fluorescence microscopy in studies of self-incompatibility of cabbage. M.S. Thesis, Cornell University, 138 pp. (1973)

Received October 21, 1978 Communicated by H.F. Linskens

Prof. Dr. D.H. Wallace Department of Plant Breeding and Biometry Cornell University Ithaca, New York 14853 (USA)